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It is proved that every dynamic Monte Carlo algorithm for the self-avoiding 
walk based on a finite repertoire of local, N-conserving elementary moves is 
nonergodic (here N is the number of bonds in the walk). Indeed, for large N, 
each ergodic class forms an exponentially small fraction of the whole space. This 
invalidates (at least in principle) the use of the Verdier-Stockmayer algorithm 
and its generalizations for high-precision Monte Carlo studies of the self- 
avoiding walk. 
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1. I N T R O D U C T I O N  

Dynamic  Monte  Carlo methods  have been widely employed in the 
numerical study of  the self-avoiding walk (SAW) and related models of 
polymer  molecules. In this note we prove that a large class of such 
methods - - inc lud ing  most  of the commonly  employed ones- -are ,  as a mat- 
ter of principle, invalid for the purpose  for which they were designed. 

More  precisely, we consider dynamic  Monte  Carlo algori thms for the 
SAW that  are based on a finite repertoire of local, N-conserving elementary 
moves (here N is the number  of  bonds  in the walk; a precise definition of 
this class of  algori thms is given in Section 2). Algori thms of this type have 
been proposed  by Delbriick, (1) Verdier and Stockmayer,/2'3) and many  
others.(4 12/ We show here that every algori thm of this type is nonergodic 

for sufficiently large N: some SAWs cannot  be t ransformed into some 
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others by any sequence of allowed moves. Indeed, we show that for large 
N, each ergodic class includes only an exponentially small fraction of the 
SAW configuration space. Precise statements of these results are given in 
Section 2 (Theorems 1 and 2). 

In fact, the nonergodicity of the Verdie~Stockmayer  algorithm was 
noticed already more than 15 years ago by Heilmann (4) and Verdier, (3)'3 
although it has perhaps not been widely appreciated since then; one recent 
discussion is that of Heilmann and Rotne. (1~) Our  contribution here is to 
show that this phenomenon is a very general one, which is inherent in a 
wide class of algorithms; it cannot be evaded merely by tinkering with the 
bead-movement  rules. The practical implications of these facts for Monte 
Carlo studies of the SAW are perhaps somewhat controversial; we discuss 
them at length in Section 4. 

2. DEFIN IT IONS A N D  RESULTS 

An N-step self-avoiding walk (SAW) co on the d-dimensional simple 
(hyper)cubic lattice Z d is a sequence of distinct points COo, col ..... coN eZd  
such that each point is a nearest neighbor of its predecessor, i.e., 
[coi -coi - l l  = 1 for 1 <i<,N.  We shall sometimes refer to the points coi of 
the walk as "beads" and to the steps (coi ~, coi) as "bonds." 

Let S IN) be the set of all N-step SAWs on 77 d that begin at the origin 
(coo =- 0) and end anywhere. In what follows, N will be fixed, and S (x) will 
be our configuration space. [Alternatively, one could define S (u) to be the 
space of equivalence classes of N-step SAWs modulo translation; our 
definition of S (u) corresponds to choosing one particular representative 
from each equivalence class.] 

Our theorems apply to all dynamic algorithms for the SAW that are 
based on a finite repertoire of  local, N-conserving elementary moves. By a 
"local" move we mean one that acts on a contiguous group of beads of no 
more than some finite maximum number. We formalize this concept 
mathematically as follows: 

Let co, co' be N-step SAWs and let k >~ 1 be an integer. We say that co 
and co' are directly connected by a k-bead move if co and co' are identical 
except perhaps for some contiguous group of k or fewer beads, i.e., if there 
exists an index i (0 ~ i ~< N -  k + 1) such that coj = coj for j = 0, 1 ..... i -  1, 
i + k ..... N. We say that co and co' are connected by k-bead moves if there 
exists a finite sequence c o -  coco), co(~),..., co(m)_ co' of N-step SAWs such that 
co(t-l) and co(t) are directly connected by a k-bead move for each l 

3 Actually, Heilmann 141 and Verdier (31 found two distinct causes of nonergodicity: "knots" and 
"double culs-de-sac," respectively. See the discussion in Section 3. 
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(1 <~l <~m). Finally, we say that c0 and ~o' are connected by k-bead moves 
and translation if there exists an N-step SAW e5 and a vector ~ ~ E d such 
that o~ and ~ are connected by k-bead moves, and co~ = oSj+ T for all j 
(O<~j<~N). 

The relation of "connection by k-bead moves and translation" is easily 
seen to be reflexive, symmetric, and transitive--i.e., an equivalence 
relation--so the space S ~N) decomposes into equivalance classes, which we 
shall call ergodic classes. The k-bead algorithm is said to be ergodic (for the 
given N) if there is only one ergodic class (i.e., all of S~N)). 

A full specification of a dynamic Monte Carlo algorithm would 
require, of course, a listing not only of the "allowed elementary moves," 
but also of their probabilities. For  our purposes, however, this detailed 
information is unnecessary. All we need to know is that, for any algorithm 
based on a "finite repertoire of local, N-conserving moves," the set of 
allowed elementary moves (i.e., those having nonzero probability) must be 
a subset of the k-bead moves as defined above, for some finite integer k. 

Remarks. 1. Note that there is a slight difference between k-bead 
moves affecting an "internal k-bead group" (i.e., l~< i~< N - k )  and those 
affecting an "end k-bead group" (i = 0 or i = N -  k + 1 ). In the former case, 
we remove a segment of k + 1 bonds and replace it by another segment of 
k + 1 bonds having the same initial point c~ i 1 and the same final point 
coi+~. In the latter case, say for i = 0 ,  we remove a segment o f k  bonds and 
replace it by another segment of k bonds having the same final point 
~oi+k=~o~, but not necessarily the same initial point c~0; the case i =  
N - k  + 1 is analogous, with "initial" and "final" interchanged. 

2. Our concept of "k-bead move" is a slight generalization of 
Meirovitch's ~12) concept of "transition to a new allowed local conformation 
(ALC)." The only difference is that he restricts himself to the case k = 3, 
and imposes an additional condition of "contour noncrossability." 

T h e o r e m  ] ( d=  2). Let k be any positive integer. Then, for all suf- 
ficiently large N (N>~ 16k + 63 will do), there exists an N-step SAW that is 
not connected to any other N-step SAW by k-bead moves. In particular, 
the k-bead algorithm is nonergodic. 

Proof. Fix a>~k, and let ~o be the (6a+  17)-step SAW 

NaES ~ + IWZNa + 2Essa  + 2W2Na + IESa 

where we have denoted the successive steps of the walk as north (N), south 
(S), east (E), or west (W). (This walk is drawn for a = 5 in Fig. 1.) We shall 
show that ~0 is not connected to any other (6a + 17)-step SAW by k-bead 
moves, 
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Fig. 1. A frozen configuration, d rawn here for a = 5. 

Suppose  that  we excise a k-bead  segment  coi,..., ~oi+ k-1 (here 0 ~< i ~< 
N - k +  1 and N - 6 a +  17). Then  we have to replace it with a ( k +  1)-step 
SAW going f rom o~i i to coi+ k (or, if i = 0 ,  with a k-step SAW going f rom 
anywhere  to ~oi+ k = ~0k; or, if i = N - k  + 1, with a k-step SAW going from 
co~_ ~= COu_~ to anywhere)  which lies entirely in the set 

W *  ~ ~ 2  \ {(~00, (L) 1 ,..., (~0i 2,(~Oi+k+l,...,(J)u} 
We shall show that  there is a unique such SAW, namely  the original one 
co~ ~,...,a~i+k (or COo,...,~o k in case i = 0 ,  or  ~ou ~ , ' " , ~ N  in case i =  
N - k §  

Let us call "outs ide beads"  those numbered  2 a + 2  through 
N - ( 2 a  + 2), inclusive ( that  is, B th rough  C in Fig. 1), and "inside beads"  
all the rest. We then distinguish three cases: 

1. The  beads  i -  1,..., i + k are all outside beads. 

2. The  beads  i -  1,..., i + k are all inside beads. 

3. The beads  i -  1 ..... i +  k include bo th  outside and inside beads. 

Case I. 2a+3<~i<~N-(2a+2)-k .  Since the inside beads are 
immobile ,  we have 

W *  c m * *  ~ ~ 2 \  {(2) 0 ..... (-02a + 1, ('ON--(2a+ 1) ..... (ON} 

Since k + 1 < �89 of outside) = a + 7, it follows that  co~_ 1,..., coi+k is 
the unique shortest  pa th  in W** f rom co~ 1 to C0~+k, hence the unique 
( k +  1)-step SAW in W** from ~oi_ 1 to coi+ k. 
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Coso 2o. Beads i -  1 ..... i + k are all contained in the initial segment 
of inside beads (OA in Fig. 1), but are not an end group 
(1 <~i<~2a+l-k). It is easily seen that the only (2a+  1)-step SAW co' 
from O=coo to A=co2a+l lying entirely in •2\{co o ..... co2a+l } is the 
original one co o ..... co2a+l. (Proof: co'l must be col, and co;a must be co2a, 
because they are the only available neighbors. Continue with co; and 
co;,-  i, etc.) 

Coso 2b. Beads i -  1 ..... i + k are all contained in the final segment of 
inside beads (DE in Fig. 1), but are not an end group ( N - 2 a  ~< i ~< N - k ) .  
This case is exactly analogous to case 2a. 

Cose 2c. i = 0 (end-group move). Because a >/k, the points coo,.-., cok 
all lie in a single vertical line. Thus, the only k-step SAW ~o' from anywhere 
to co~ lying entirely in W* is the original one co o ..... cok. (Proof'. co' k-  ~ must 
be co~ 1, because it is the only available neighbor, etc.) 

Coso 2d. i = N - k +  1 (end-group move). This case is exactly 
analogous to case 2c. 

Coso ,3o. Beads i - 1  ..... i + k include some from the initial segment 
of inside beads (OA in Fig. 1) and some outside beads 
(2a + 2 - k ~< i ~< 2a + 2). Arguing as in case 2a, we conclude that the beads 
up to and including B are forced to be in their original positions (i.e., 
co~ = % for j = i,..., 2a + 2). But we are then reduced to case 1. 

Caso 3b. Beads i -  1 ..... i + k include some from the final segment of 
inside beads (DE in Fig. 1 ) and some outside beads 
[ N - ( 2 a + l ) - k < ~ i < ~ N - ( 2 a + l ) ] .  This case is exactly analogous to 
case 3a. 

This proves the theorem for the special case N>>.6k+ 17 with N_~5 
(mod 6). 

We now sketch the proof of theorem for arbitrary large N, leaving the 
details to the reader. Fix a ~> k, and consider the (8a + 31)-step SAW 

N "  + lENa + 2 W 2 N a  + 3E 7S a + 3 W 3 N a  + 1ESaENa + 1W3S a + 2 

(This walk is drawn for a = 5 in Fig. 2a.) It is straightforward to show, by a 
slight extension of the foregoing proof, that this SAW is not connected to 
any other (8a + 31)-step SAW by k-bead moves. Now, imagine connecting 
the walk of Fig. 2a to an inverted image of itself, with the connection being 
a straight rod of length l>~ 1 (see Fig. 2b). It is then easy to see that this 
(16a+ 62 +/)-step SAW is not connected to any other by k-bead moves. 
(The top and bottom pieces are "frozen" as in Fig. 2a, and the connecting 

822/47/3-4-19 
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rod is "frozen" because it is taut.) This completes the proof of the theorem 
for arbitrary N~> 16k + 63. | 

Remark. Obviously our lower bound on N is far from optimal. An 
alternate bound can be obtained by considering the configuration of Fig. 2a 
with some (but not too many!) of the final beads missing--details are left 
to the reader. Also, a quick proof of nonergodicity for all N~> 8k + 31 can 
be obtained by appending a "tail" to the configuration of Fig. 2a: although 
this SAW is not completely "frozen," it is nevertheless not deformable into 
a straight rod by k-bead moves. 

Our next goal is to show that for large N, each ergodic class includes 
only an exponentially small fraction of the SAW configuration space. Our 
main tool is a deep theorem of Kesten, (13) which we now proceed to 
explain. Let co E S (M~ and co'e S (N), with N~> M; we refer to co as a pattern, 
and say that co occurs at the r th step of  co' (0 <~ r <~ N -  M)  if co'r+ i = co'r +coi 
for 0 ~< i ~< M. There exist patterns that may occur once or twice on SAWs 
in Z d but never more than twice (see Hammersley and Whittington t14~ for 
an example). But three times is always enough: 

k e m m a .  Let co be a pattern. Then the following are equivalent: 

(a) There exists a SAW on which co occurs at least three times. 

(b) There exists an infinite SAW on which co occurs infinitely many 
times. 

(c) There exists a SAW co' on which co occurs, and a cube D such 
that co' lies in D and has its endpoints at vertices of D. 

The implications ( c ) ~  ( b ) ~  (a) are obvious, and ( b ) ~  (c) is not difficult. 
The only nontrivial part of this Lemma is (a) ~ (b), which was proven by 
Hammersley and Whittington. ~14~ 

Now let 

cu -= card(S (u)) - the number of distinct N-step SAWs (2.1) 

and, for each pattern co, 

cu(j, co)~card({co'~s(U):  co occurs on co' at most j times}) (2.2) 

Kesten's theorem then states that any pattern co that is capable of occur- 
ring at least three times on a SAW must in fact occur at least eN times on 
an N-step SAW, with the exception of "exponentially few" co'~ S(NI: 

Kesten's Theorem (Ref. 13, Theorem 1). Let co be a pattern 
satisfying the conditions of the lemma. Then there exist constants e, C1, 
C2 > 0 such that 

CN(,7.N, CO)/CN ~ C1 e CzN (2.3) 
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for all N. (Kesten's theorem actually states a bit more than this, but this is 
all we shall need.) 

We can now state our second main result: 

T h e o r e m  2 ( d =  2). Let k be any positive integer, and let 

c~) =- max{card(Cg): cg is an ergodic class of S (N) for the k-bead algorithm} 

(2.4) 
Then there exist constants C3, C4 > 0 (depending on k) such that 

c(Nk)/CN ~ C3 e-c4u (2 .5 )  

for all N. 

ProoL Fixa>~k ,  and let P be the SAW 

Na+ 2W3S~+ 1ENaESa+ 1 W3N~+ 3E9Sa+ 3W3N~+ I ESaENa+ 1 W3S~+ 2 

of total length L = 10a + 39. (This walk is drawn for a = 4 in Fig. 3.) Now 
let co be an N-step SAW (N>~L). Reasoning as in the proof  of Theorem 1 
shows that if P occurs in co at the mth step, and co is connected to co' by 
k-bead moves, then P must occur in co' at the m th step. (In fact, we must 
have coj= co) for m<<.j<~m+L.) For  0 < ~ m l < m 2 <  "-" < m , < N ,  let 

EN(ml, m2,..., mr) 

=_ {~o ~ s(N): P occurs in co at m i for each j = 1,..., t and nowhere else in ~o} 

(2.6) 

T 
6t, 

Fig. 3. The pattern P employed in the proof of Theorem 2, drawn here for a = 4. 
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For t = 0, this is the set of c~ in which P nowhere occurs. (For t ~> 2, it is 
easy to see that successive occurrences of P in co cannot overlap, so we 
must have mj - mj_ 1 > L.) From the foregoing it follows that each ergodic 
class for the k-bead algorithm is contained in some EN(ml, m 2 ..... m,). By 
Kesten's theorem there exist constants a, C~, C2 > 0 such that 

t ~ N  ml < m 2 <  "'" <mr 

CN(eN , P)/CN <~ Cle -C2u (2.7) 

Now define the following map, which "chops off' each occurrence of P and 
replaces it by a single bond: 

is given by 

f:  EN(ml, m2 ..... mt) ~ s [ N  t(L-- 1)] 

~oi for O ~ i ~ m l  

( r ico)) ,= COi+r(L-l) for m r - - ( r - - 1 ) ( L - - 1 ) K i ~ m r + ~ - - r ( L - - l )  
and l <~ r < t 

~Oi+,(L- 1) for m , - ( t - 1 ) ( L - 1 ) < i < ~ N - t ( L - 1 )  

(2.8) 
Since f is one-to-one, it follows that 

card(EN(ml, m2 ..... mr)) ~< CN_ t(L--1) (2.9) 

Moreover, it is known (~5) that #"~< c,.%< C 5 # "  exp(C6 x /M)  for suitable 
constants #, C5, and C6. It follows that if t > eN, then 

C N t ( L _ _ I ) / C N ~ C 7  C C8N (2.10) 

for some constants C7, C8 > 0. The theorem then follows from (2.7) com- 
bined with (2.9)-(2.10). | 

The extension of Theorems 1 and 2 to d =  3 uses identical arguments 
to those we have used in proving the d =  2 case, so we will omit all details 
except for the construction of a SAW that is not connected to any other 
SAW by k-bead moves, and plays the role of the pattern P in Theorem 2. 

Fix k i> 4 (obviously this is no loss of generality). We will construct a 
SAW c~ of length N - k 3 +  9k2+ 6 k -  23 that lies in the box 

B = { ( x , y , z ) : 0 < ~ x < ~ k + 6 , 0 < . y < ~ k - 1 ,  - l  <.Gz<~k} 

has both endpoints on the boundary of this box, and is connected to no 
other N-step SAW by k-bead moves. 
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The solid lines in Fig. 4a show the middle  par t  of  ~o; it is con ta ined  in 
the b o u n d a r y  of the box B. The  rest of ~o fills up the in ter ior  of B (as the 
dashed  lines in Fig. 4a begin to indicate) ,  and  the middle  par t  wraps  it up 
t ight ly  so tha t  no th ing  can move.  F igure  4b is a top  view (xy-p lane  projec-  

t ion)  of eg, for the case k = 6. A solid do t  signifies a segment  of  the walk 

. /  

I/ :-7, 

j 7 7 7 / , ,  i ~ . , ,  , , 
I / / /  ', L _  ',_',__ 

/ /  ; I , ,  

a 

(a) 

9 

k-I 

Z 

;,-X 

I 

I 
J 

So 

t n 

to 
9 -- 

to , 
I 
i 

�9 i 

R 9M 

k-I 

(b) 

Fig. 4. The walk co. (a) Perspective view: (--) The middle part of ~o (called S); ( - )  begin- 
ning to indicate the first and last parts. Here ct= (3, 0, 0) and /~=(k+3, 0, k -1 ) .  (b)Top 
view: ( � 9  Segments of the walk going in the + z direction; ( �9 ) segments of the walk going in 
the - z direction. 
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going in the + z  direction; an open dot  signifies a segment going in the - z  
direction. We now describe the construct ion in detail. 

First  we construct  a shorter  SAW, S, of length M - 4 k 2 +  1 0 k - 1 ,  
which will be the "middle" par t  of co as shown in Fig. 4a. For  0 ~< i<,k - 1, 
let U i be the (4k + 9)-step SAW with starting point  (i + 3, 0, i) and terminal 
point  (i + 4, 0, i) which passes through the points 

{(x, y, i ) e B : x = O o r x = k + 6 o r y = O o r y = k -  1} 

Also, let V i be the one-step SAW from (i + 4, 0, i) to (i + 4, 0, i + 1). Then S 
is the walk formed by concatenat ing U ~ V ~ U 1, V 1 ..... U k-  2, V k 2, U k-  1. 
Thus, the endpoints  of S are (3, 0, 0) and (k + 3, 0, k -  1 ). 

Next,  we construct  the template for the rest of co. First, let 

C =  {(x, y): 0 < x < k + 6  a n d 0 <  y < k -  1} 

Then  let R = (ro, r 1 . . . . .  rm) and T =  (to, tl ..... t,,) be SAWs in Z 2 such that: 
m >~ 2 and n ~> 2; r m = ( 3 ,  1 )  and t o = (k + 3, 1); R and T are disjoint, and 
the union of their ranges is precisely C. [ In  particular, it follows that 
m + n + 2 = ( k + 5 ) ( k - 2 ) . ]  One possible choice of R and T is shown in 
Fig. 4b for the case k = 6. Essentially, R and T will be the projections onto  
Z 2 of the "first" and "last" parts of co, respectively. The general scheme is: co 
goes "up"  ( + z  direction) k steps, then takes a "hor izontal"  (xy-plane) step 
according to R or T, then goes "down"  k steps, then takes another  
"hor izontal"  step, and so on. 

N o t a t i o n .  For  a point  r = ( x ,  y ) e Z  2 and an integer z, let ( r , z )  
denote (x, y, z). 

We are now ready to define co = (coo, col , ' " ,  coN):  

1. F o r 0 ~ < j < m a n d 0 ~ < i ~ < k + l ,  define 

((rj , i -  1) if m - j i s  odd 
c~ k--i) if m - - j i s  even 

2. For  O<~i<~k, define com(k+2)+i=(rm, k - i ) .  
3. Define com(k+2)+k+l=(3,0, O). 
4. For  0 ~ < i ~ 4 k 2 +  1 0 k -  1, define COm~k+2/+k+~+i=Si. 

[Let  J =  4k 2 + 10k + m(k + 2) + k. So we are so far up 
( k +  3, O, k -  1).] 

5. Forl<~i<~k+l, definecoj+~=(k+3,1, k - i ) .  

to coj = 
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6. For  l < ~ j ~ n a n d 0 ~ i ~ < k + l ,  define 

= ~(tj, i -  1) if j i s  odd 
(J.)J+j(k+2)+i ~(tj, k - i )  if j i s e v e n  

This completes the definition of co. It is now left to the reader to show, as in 
Theorems 1 and 2, that co is not connected to any other N-step SAW by 
k-bead moves. 

We expect that Theorems 1 and 2 hold also in lattice dimensions d >~ 4, 
but we have not worked out a proof: this is left as an exercise for readers 
whose capacity for multidimensional geometric visualization surpasses our 
o w n .  

3. SOME REMARKS (HISTORICAL AND OTHER) 

The proofs given in Section 2 are very general, but very crude: the 
lower bounds on N given there are far from optimal. It is perhaps of 
interest, therefore, to look at some specific algorithms in the literature. 

Figure 5 shows some examples of k-bead moves with k = 1, 2, and 3. 
Moves A C are a complete listing of the one-bead moves. Moves D - F  are 
a partial listing of the two-bead moves (there are, in addition, numerous 
two-bead end-group moves, and in d>~ 3 there are some additional two- 
bead internal-group moves as well). Move G is a typical three-bead move 
(there are many others). All of the local, N-conserving algorithms in 
Refs. 2-11 are based on some subset of moves A-F; the algorithm of 
Delbriick (~/ uses some additional two-bead moves, and the algorithm of 
Meirovitch/~2/uses some additional two-bead and three-bead moves. 

The foregoing algorithms are nonergodic already for small values of N: 

1. The "double cul-de-sac" configuration shown in Fig. 6a is 
completely "frozen" under elementary moves A, B, and D-F.  It follows 
that the original Verdie~Stockmayer algorithm (2'3) and most of its 
generalizations(4,6 l~) are nonergodic (in d =  2) already for N =  11. 

2. If move C is allowed, then the configuration of Fig. 6a is no longer 
frozen, but that of Fig. 6b still is. Thus, any algorithm based on moves A-F 
is nonergodic (in d =  2) for N =  15. 

3. If two-bead end-group moves are allowed, then the configuration 
of Fig. 6b is no longer frozen, but that of Fig. 6c still is. Thus, any 
algorithm based on one-bead and two-bead moves is nonergodic (in d =  2) 
for N = 1 9 .  

4. When three-bead moves are allowed, it is not sufficient simply to 
make the "double cul-de-sac" taller. Indeed, any double cul-de-sac of the 
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__J - __d t__ --] 
C 0 

__1 t _ _ - - ' _ _ z - z  . . . .  , 

E F 

G 

Fig. 5. Some examples of local, N-conserving elementary moves. One-bead moves: (A) 180 ~ 
kink-jump, (B) 90 ~ end-bond rotation, (C)180 ~ end-bond rotation. Two-bead moves: 
(D) 180 ~ crankshaft, (E)90 ~ crankshaft (d>~3 only), (F)two-bead kink-jump. A three-bead 
move: (G)three-bead L flip. 

kind shown in Fig. 6, no matter  how tall, can be unfolded into a straight 
rod by repeated use of the moves A, B, and G. (The reader might find it 
amusing to work out the required sequence of moves.) But only one 
additional trick is needed: by folding the double cul-de-sac once more, as in 
Fig. 1, a frozen configuration can be obtained for the k-bead algorithm for 
arbitrary k. 

The nonergodicity of the Verdier-Stockmayer algorithm due to double 
culs-de-sac was noticed already by Verdier (3) in 1969. Indeed, his article 
shows a three-dimensional analogue of the double cul-de-sac, with N =  21. 

An entirely different type of nonergodicity arises in dimension d =  3 
(and only there) because of the possibility of knots, as was first pointed out 
by Heilmann (4) in 1968. The simplest knotted configuration is shown in 
Fig. 7: it has N =  18, and although it is not completely "frozen," it 
nevertheless cannot be deformed to a straight rod using moves A-F.  We 
believe that analogous knots can be constructed for the k-bead algorithm 
for arbitrary k, although we have not worked out the details. (An excellent 
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Fig. 6. Some "double cul-de-sac" configurations, frozen in the Verdier-Stockmayer 
algorithm and its generalizations. 

bibliography on knots in polymer physics can be found in an article of 
Michels and Wiegel. (16)) 

In this paper we have restricted attention, for simplicity, to SAWs on 
the simple (hyper)cubic lattice 7/J, but analogous results presumably hold 
for other regular lattices. Local, N-conserving Monte Carlo algorithms for 
SAWs on the tetrahedral lattice have been employed by Monnerie and 
G~ny (17~ and Kremer et al. (18) 

An analogue of the Verdier-Stockmayer algorithm has also been 
devised (19'2~ for models of continuum polymer chains. In the 
"pearl-necklace" model, for example, hard spheres of diameter D are con- 
nected by freely jointed rods of length L ( D ~ L ) .  The "kink-jump" 
algorithm (19a~ then moves a bead co i randomly along the circle defined by 
the fixed neighboring beads co i i and coi+ 1. Perhaps this algorithm is also 
nonergodic, at least for D/L sufficiently close to 1; this is an open question. 
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7 
Fig. 7. A "knot" that cannot be deformed to a straight rod using moves A-F. 

A very different type of nonergodicity occurs in the "slithering-snake" 
(reptation) algorithm of Kron (21'221 and Wall and Mandel. C23'241 The 
elementary moves of this algorithm are "slithering" motions: one step is 
appended at one end of the walk, and one step is simultaneously deleted 
from the other end. Such a move is N-conserving, but is nonlocal according 
to our definition. In this algorithm, frozen configurations occur t22'23) when 
both ends of the walk are trapped in culs-de-sac. The simplest such con- 
figuration is shown (for d =  2) in Fig. 8, and has N =  14. The superficial 
resemblance between Figs. 1 and 8 is, however, very misleading: the non- 
ergodicities in the two types of algorithms are of radically different natures. 
In the local, N-conserving algorithms, nonergodicity is caused by the 
occurrence of a frozen conformation anywhere along the walk (cf. Fig. 3 
and the proof of Theorem 2). In the slithering-snake algorithm, by con- 
trast, nonergodicity occurs only if the ends' of the walk are trapped in 
culs-de-sac. Indeed, in the slithering-snake algorithm, the ergodic class of 
the N-step straight rod includes all N-step SAWs that can occur on some 

X 7. 

Fig. 8. A "double cul-de-sac" frozen in the slithering-snake (reptation) algorithm. 
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2N-step SAW in the sense defined preceding Theorem 2. 4 In particular, any 
N-step SAW that can be extended to a 2N-step SAW belongs to the 
ergodic class of the straight rod. Let d N be the number of N-step SAWs 

p 1/2 that can be extended to a 2N-step SAW. Clearly C2N ~ d2x, SO that d N >~ ~2N" 
Hence, the fraction of S (x) that belongs to the ergodic class of the straight 
rod is ~dN/r  N ~ cl/2/C N. This quantity behaves as follows: 

1. Nonrigorously, C~/~/CN ~ N (r-1)/2. (This follows from the believed 
scaling behavior CN~ #NN~ 1.) 

2. Rigorously, ~2N/~N"l/2/'~ >/ C9exp(-C10x~N).  (This follows from the 
rigorous bounds (15) ]AN~ C N ~ C5# N exp(C 6 x)/-N) noted earlier.) 

Thus, the analogue of Theorem 2 for the slithering-snake algorithm is false! 
(It would be interesting to know, even heuristically, the behavior of dN/CN.) 

4. PRACTICAL IMPLICATIONS 

What are we to make of these failures of ergodicity? Most workers in 
the field seem to have ignored the question entirely; among those who have 
considered it, the general belief (3'4'23) seems to be that the "forbidden" con- 
figurations are rare, and therefore that their exclusion will cause a 
negligible error in practice. Heilmann (4) argues, for example, that "the 
number of configurations with tight knots is a very small fraction, only, of 
the total number of configurations. Therefore disregarding these con- 
figurations totally ... probably introduces only a negligible difference." 
Similarly, Wall and Mandel, (23) commenting on the slithering-snake 
algorithm, argue that "the probability of one cul-de-sac is small, especially 
in three dimensions; accordingly, the probability of two cul-de-sacs [sic] 
for the same molecule will be exceedingly small indeed, being of the order 
of the square of the probability for one .... The difference [due to non- 
ergodicity] should be very small indeed and can be neglected for most pur- 
poses. (This is borne out by numerical calculations.)" 

More recently, however, Heilmann and Rotne (11) have sounded a 
cautionary note: "For moderate values of N it is only a small fraction of 
the conformations which is separated from the main ergodic class ... But as 
N increases the probability of having a locked conformation in part of the 

a Proof'. Let co E S ~u) occur on co' ~ S~2N); we wish to show that co can be deformed by the rep- 
tation algorithm into a rod. Let R be the smallest rectangular box containing co', and let coj 
be a point of ~o' that lies on the boundary of R. Now let of' be the N-step SAW 
(co~, ~oj+ 1 ..... co~+ N) ifj  ~< N, or (~o~_ u ..... ( / ) j )  if j  > N. Clearly, co can be deformed into co" (by 
"slithering" along co'), and co" can be deformed into a rod (by "pulling" at the end that 
touches the boundary of R). 
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chain increases (to one in the limit N--* oo) and the fraction of confor- 
mations which belong to the main ergodic class (the class with all the open 
conformations) will decrease (to zero in the limit N--* oo)." This statement 
is correct, for all local, N-conserving algorithms--indeed, our Theorem 2 
makes rigorous a very strong form of this assertion. Unfortunately, we 
have no quantitative estimate of the constants C3 and C4 in Theorem 2 
(they could in principle be inferred from our proof together with the proofs 
of Kesten/13) and Hammersley and Welsh/15)), so we are unable to say 
quantitatively how serious this nonergodicity is for any given value of N. 
(Our proof is in any case very crude: the true value of C4 is clearly much 
larger than our proof would indicate.) But the examples given in the 
preceding section do show that this nonergodicity arises already for quite 
small values of N. 

Good  numerical evidence on the size of the systematic error due to 
nonergodicity is, unfortunately, hard to come by. What is required is to 
compare expectation values in the standard SAW ensemble (all SAWs) to 
those in a suitably restricted ensemble (e.g., ergodic class of the straight 
rod). We see four potentially viable methods for doing this: 

(a) Exact enumeration versus exact enumeration. 

(b) Exact enumeration versus Monte Carlo simulation. 

(c) Extrapolated exact enumeration versus Monte Carlo simulation. 

(d) Monte Carlo simulation versus Monte Carlo simulation. 

We discuss these in turn. 

(a) Exact enumeration versus exact enumeration. For  small N, one 
can explicitly enumerate both the ensemble of all SAWs and the ergodic 
classes of a given Monte Carlo algorithm. For  example, for d = 2  and 
N =  11, the ensemble of all SAWs has (25) 

clj = 120,292 

Cl1((D21 ) =3,610,884 

(~o~1) ~ 30.017657 

while the ergodic class of the straight rod under moves A, B, D, F has S 

c'11 = 120,284 

c'11 ( ( ~ 1 ) '  = 3,610,876 

~ (Y')ll)t ~ 30.019587 

5 There are eight "frozen" configurations (Fig. 6a in various orientations), each of which has 
co,z1 = 1. All other configurations are deformable to a rod. 
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Thus, for N =  11, the systematic error  in (~o 2 )  is roughly 0.006%. For  
d =  2 and N =  13 the corresponding values are (2s) 

c j3 = 881,500 

c13(~o123) = 33,765,276 

(~o23) ~ 38.304340 

and 6 

c'13 = 881,436 

f 2 ) f  c13(co13 =33,765,212 

@)23 ) '  ~ 38.307049 

for a systematic error of 0.007%. For  d =  2 and N =  15 the values are (251 

c15 = 6,416,596 

c~5(o9~5 ) = 302,977,204 

(~OlS) ~ 47.217747 

and 7 

c'j5 = 6,416,332 

c'15 (oo25)'  = 302,976,940 

(o)25) '  ~ 47.219648 

for a systematic error of 0.004%. Thus, right at the threshold of non- 
ergodicity the effect is very small, since it is caused by very few con- 
figurations; this is hardly surprising. Presumably  the effect gets larger at 
larger N. Unfortunately,  the exact enumerat ion  of ergodic classes is a 
rather difficult task: it is equivalent to finding the connected components  of 
a graph with c N vertices and (for the local, N-conserving algori thms) O ( N )  
edges per vertex. This is at least a factor of N more  computa t ional ly  com- 
plex than the enumerat ion  of  SAWs. 

(b) Exact enumerat ion  versus Monte  Carlo simulation. The quanti ty 
(oo2)  in the s tandard  SAW ensemble has been computed  for N~< 27 on the 
square lattice and for N-..<20 on the simple cubic lattice. (26) It would be 

6 There are 64 configurations not deformable to a rod (only 16 of which are "frozen"), each of 
which has ~o23 = 1. 

7 There are (if we have counted correctly) 264 configurations not deformable to a rod (only 40 
of which are "frozen"), each of which has ~o~5 = 1. 
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possible in principle, therefore, to do high-precision Monte Carlo 
simulations in the region of nonergodicity (N/> 11 for Verdier-Stockmayer 
in d = 2 ,  and N>~ 18 in d = 3 ) ,  which could be compared against exact 
enumeration. However, we are not aware of any existing computations in 
this region. 8"9 In any case, the sought-for systematic error would most 
likely be hidden under a much larger statistical error, for any reasonable 
CPU time on a currently available supercomputer. Indeed, the 
autocorrelation time r for the local, N-conserving Monte Carlo algorithms 
grows rapidly with N, roughly like N 2+2" ( ~ N  ~3"2 in d=3)(32); and 
roughly r/e2 iterations are needed for relative accuracy e. This is an enor- 
mous computational demand. Quite honestly, we do not think this 
problem is worth the effort. 

(c) Extrapolated exact enumeration versus Monte Carlo simulation. 
Monte Carlo measurements of (~02N) ' can, of course, be compared to 
extrapolations from exact-enumeration data. The Monte Carlo data in 
Refs. 2, 12, 27, 28, and 30 do appear to agree with such extrapolations to 
within statistical error, typically ~0 .2 -1%.  This statistical error is quite 
large, for the reasons noted previously. Moreover, there is a logical dif- 
ficulty here: Suppose we were to perform an infinitely long Monte Carlo 
run, thereby obtaining measurements of (0 )2 )  ' with zero statistical error; 
and suppose that these data were to agree with extrapolated exact 
enumeration to within the subjective error estimates for that extrapolation. 
This would confirm that the systematic error of the Monte Carlo algorithm 
is smaller than or equal to the estimated extrapolation error, at the given 
value of N; but it would provide no logical justification whatsoever for using 
the Monte Carlo algorithm to test the extrapolations, or to make 
measurements of higher accuracy, or to work at higher values of N. In other 
words, it would provide no logical justification for using Monte Carlo to 
do anything that has not already been done by extrapolated exact 
enumeration. And in that case, what's the point of Monte Carlo? 

(d) Monte Carlo simulation versus Monte Carlo simulation. There 
do exist Monte Carlo algorithms for the SAW that are both ergodic and 

8 Virtually all existing work of which we are aware (see, e.g., Refs. 2, 4, 11, 27-30) has been 
performed in d =  3 at N~< 16 (where the Verdier-Stockmayer algorithm is still ergodic) or at 
N~> 31 (beyond the reach of exact enumeration).  GurIer et al. (3~) have one run at N =  23, 
and Romiszowski and Stockmayer ~3~ have one run at N =  24. Meirovitch (~2) has a run at 
N =  20, but  we do not  know whether his algorithm is ergodic there. 

9 For the slithering-snake algorithm, Mandel (24) presents Monte  Carlo data at N =  20 that 
agree with exact enumerat ion to within statistical error, roughly 0.2 %. He also presents data 
at values of N from 40 to 600 which agree well with extrapolated exact enumerat ion (see 
below for discussion). The earlier data of Wall and Mandel (23) at N =  10 are, however, 
irrelevant for present purposes, since the slithering-snake algorithm is ergodic at N =  10. 
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efficient (see below). So one could in principle use an algorithm of this type 
to make high-precision measurements in the standard SAW ensemble, and 
then compare them to measurements made using a nonergodic algorithm. 
But this test procedure suffers from the same two difficulties as in case (c). 
And what's the point of using a Monte Carlo algorithm that is nonergodic 
and inefficient, when there exist alternative algorithms that are both 
ergodic and efficient? 

In our opinion the seriousness of the nonergodicity problem depends 
on the type of information one is seeking. If one is seeking moderately 
accurate numerical data for modest values of N, then perhaps the exclusion 
of some configurations will cause only a small error. But the most 
interesting questions about the SAW concern the critical behavior, i.e., the 
behavior as N--, oc, and here the problem is extremely serious: the 
exclusion of certain configurations means that one is really studying a dif- 
ferent model with different long-range excluded-volume interactions from 
those of the standard SAW; thus, it is quite possible that this model lies in 
a different universality class and has different critical exponents. (This is 
admittedly a speculation for which we have no hard evidence.) 
Moreover and this is a general objection to any Monte Carlo algorithm 
with an uncontrollable systematic e r ror - - to  pin one's hopes on the expec- 
ted "smallness" of the error is to give up one of the main advantages of the 
Monte Carlo method, namely that one knows exactly what model one is 
studying and that one has complete control over all errors except statistical 
fluctuations. Finally, there is no excuse for using nonergodic (and 
inefficient!) algorithms, when there exist alternative algorithms that are 
both ergodic and efficient.l~ 

10 There is one exception to this statement. Heretofore we have assumed tacitly that the goal is 
to compute static quantities (i.e., equilibrium expectation values) in the standard SAW. 
From this point of view the Monte Carlo algorithm is merely a computational method; the 
choice between competing algorithms is to be made solely on grounds of efficiency. Polymer 
physicists are, however, also interested in the dynamics of polymer molecules. In this case it 
is important to use a Monte Carlo algorithm that at least roughly mimics the true physical 
dynamics (perhaps in some approximation). For example, the local, N-conserving 
algorithms are intended to simulate the dynamics of a single polymer chain in a good 
solvent in the "free-draining" limit, i.e., neglecting hydrodynamic interactions. (This limit 
does not correspond to any physically realizable situation, for in fact the hydrodynamic 
interactions always dominate the dynamics.) For such problems it is perhaps reasonable to 
use a nonergodic algorithm, since appropriate alternative algorithms are not available 
(at present), and the systematic error due to nonergodicity is probably small compared to 
the modest accuracy desired. However, even in this case it is worth exploring the possibility 
of devising ergodic algorithms that adequately represent the desired dynamics. For example, 
one possibility might be the continuum "kink-jump" algorithm. 
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We conclude that dynamic Monte Carlo algorithms based on a finite 
repertoire of local, N-conserving elementary moves are not suitable for 
high-precision studies of the standard (equal-weight) SAW distribution. 

What options remain, then, for Monte Carlo studies of the SAW? We 
see three main classes of viable algorithms: 

1. Static or quasistatic algorithms. For these algorithms the 
question of ergodicity does not arise. At least three algorithms in this class 
appear to be reasonably efficient: dimerization, (33 36~ enrichment,(37.38) and 
the Redner-Reynolds algorithm. (39) For enrichment and Redner-Reynolds, 
the CPU time required to generate one "effectively independent" sample 
appears (38~ to be of order N 2. 

2. Nonlocal, N-conserving dynamic algorithms. A very interesting 
algorithm in this class was invented by Lal (4~ and subsequently 
rediscovered by MacDonald et al. (41); a comprehensive study is currently in 
preparation.(42) The elementary moves of this algorithm are "pivot" moves: 
one "halt" of the walk is rotated (or reflected) around a pivot point chosen 
randomly along the walk. This algorithm is nonlocal according to our 
definition, since the number of beads that may participate in a single move 
is unbounded. It can be proven I421 that this algorithm is ergodic. This 
algorithm also appears to be extraordinarily efficient: modulo some sub- 
tleties (discussed in detail in Ref. 42), the CPU time per "effectively 
independent" sample is of order N. 

3. Non-N-conserving dynamic algorithms. We know of three 
algorithms in this class: 

(a) Kron et al. ~22~ proposed a generalization of the "slithering-snake" 
algorithm that cures its nonergodicity. The CPU time per "effectively 
independent" sample is of order ( N )  2. 

(b) Berretti and Sokal (43/ proposed a closely related algorithm, 
which may be dubbed the "slithering tortoise." It generates SAWs in a 
"grand canonical" ensemble with one endpoint fixed and the other 
endpoint free. This algorithm is easily proven (43) to be ergodic. The CPU 
time per "effectively independent" sample is of order ( N )  2. 

(c) Berg and Foerster (44~ and Aragfio de Carvalhoetal. (45,461 
(BFACF) proposed an algorithm that generates SAWs in a "grand 
canonical" ensemble with both endpoints fixed, e.g., one endpoint at the 
origin and the other at x (r The ergodicity situation for this algorithm 
is rather complicated: 

(i) In dimension d=2,  it can be proven (47~ that the BFACF 
algorithm is ergodic, for all choices of x. 

822/47/3-4-20 
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(ii) In dimension d = 3 ,  it can be proven (47'48) that the BFACF 
algorithm is nonergodic (due to knots) if [ x l ~ -  
m a x ( I x l l ,  Ix2l, Ix3l) = 1. 

(iii) In dimension d =  3 with Ixl~ ) 2 ,  or in dimension d~>4, we do 
not know whether the BFACF algorithm is ergodic (but we sus- 
pect that it is). This is an important open question, as the main 
application of this algorithm will be in dimensions 3 and 4. 

The dynamical behavior of this algorithm, and thus its computational com- 
plexity per "effectively independent" sample, are not well understood at 
present; see Refs. 32 and 49. 

There is thus no lack of efficient, ergodic Monte Carlo algorithms for 
the self-avoiding walk. We urge that they be used! 
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